After The LHC: The Next Really Big Experiments In Particle Physics

took the Large Hadron Collider just three years to find the Higgs boson–but it took nearly 20 years to create the Large Hadron Collider. High energy physics happens at the speed of light, but the underlying practicalities move at the speed of bureaucracy, funding requests, and setting concrete. So to keep things moving forward, the global physics community is constantly envisioning and re-envisioning the next big things in high energy particle physics–things big enough to dwarf even the largest and most expensive science experiment mankind has ever created.
Last month at a meeting in Krakow, Poland, we caught a glimpse of these next big things. CERN’S European Strategy Preparatory Group symposium earlier this month collected particle physicists and science policy makers from around Europe and the globe to consider the current and future needs of the physics community and to discuss its many possible futures. Two things seem certain at this point: The LHC isn’t going anywhere just yet, but eventually we’re going to need a bigger, badder replacement for the LHC.
“The LHC will continue to run, and the LHC will continue to be a very, very big part of the particle physics program for the next 15 or 20 years, primarily in finding out more about the Higgs boson,” says Terry Wyatt, a professor of physics at the University of Manchester and an attendee of the strategy symposium. “One of the main points of consensus that emerged from this meeting was that upgrading the LHC to what we’re calling the High Luminosity LHC will take us through 2030 or so.”
These upgrades would include replacing the current LHC accelerator ring magnets with newer, stronger magnets sometime around 2022, essentially creating a more powerful accelerator in the existing LHC footprint. That would allow researchers to continue performing the world’s most advanced physics beneath the Swiss-French border until the end of the next decade. That also means that if physicists want to undertake another experiment as large and ambitious as the LHC and have it ready to start smashing particles by the time the LHC winds down operations around 2030, they really should already be deep into the design phase and preparing to break ground. They’re not; but they’re certainly talking about it. Also up for discussion at the symposium was the question on everyone’s minds: what’s next?