Medical Imaging for Translational Cancer Research Center Opens at the University of Oklahoma

The University of Oklahoma has received funding from the National Institutes of Health to establish the Oklahoma Center of Medical Imaging for Translational Cancer Research, a collaboration between the Gallogly College of Engineering on the OU Norman campus and OU Health Stephenson Cancer Center in Oklahoma City.

“Great scientific advancements are best achieved through multidisciplinary collaboration, which is exactly what will be accomplished at the Oklahoma Center of Medical Imaging for Translational Cancer Research,” said OU President Joseph Harroz Jr. “This exciting effort unites some of the brightest minds from across two of our campuses, who will combine their expertise to develop life-changing solutions. Their work is a prime example of how OU researchers are reaching beyond traditional boundaries to spark new discoveries with real-world impacts.”

The award from the Centers of Biomedical Research Excellence (COBRE) program of the NIH is expected to provide more than $11.3 million over a five-year Phase 1 period, with the opportunity to compete for renewal for up to three phases. The first phase supports the center’s establishment to galvanize multidisciplinary biomedical research through equipment and facilities support to junior faculty. This is the second COBRE center on OU’s Norman campus, joining the Oklahoma COBRE in Structural Biology.

Bin Zheng, Ph.D., a professor and Oklahoma TSET Cancer Research Scholar in the Gallogly College of Engineering’s School of Electrical and Computer Engineering, is leading the new center.

About the Oklahoma Center of Medical Imaging for Translational Cancer Research

Medical imaging is an essential tool to help doctors and scientists assess the size and scope of a tumor that will be effectively removed by surgery, as well as the rate at which tumors shrink in response to medical interventions such as chemotherapy or radiation therapy. OU researchers are investigating multiple avenues to help improve medical imaging use in cancer detection, diagnosis and treatment.

“Radiological imaging tries to detect a tumor or disease area, while pathologic imaging tries to confirm whether it is benign or malignant,” Zheng said. “While there are other kinds of testing methods, like blood testing, imaging is the most commonly used by clinicians.”