Highest ever Resolution Photos of the Night Sky

A team of astronomers from three institutions has developed a new type of telescope camera that makes higher resolution images than ever before, the culmination of 20 years of effort. The team has been developing this technology at telescope observatories in Arizona and now has deployed the latest version of these cameras in the high desert of Chile at the Magellan 6.5m (21 foot) telescope. Carnegie’s Alan Uomoto and Tyson Hare, joined by a team of researchers from the University of Arizona and Arcetri Observatory in Italy, will publish three papers containing the highest-resolution images ever taken, as well as observations that answer questions about planetary formation, in The Astrophysical Journal.
 
“It was very exciting to see this new camera make the night sky look sharper than has ever before been possible” said Laird Close of the University of Arizona, who was the project’s principal scientist. “We, for the first time, can make deep images that resolve objects just 0.02 arcseconds across—this is a very small angle—it is like resolving the width of a dime seen from 100 miles away, or like resolving a convoy of three school busses driving together on the surface of the Moon.”
 
This improvement results from the use of a large 6.5m telescope for photography at its theoretical resolution limit for wavelengths of visible light. Previously, large telescopes could make sharp photos only in infrared (long wavelength) light. Even large telescopes, those equipped with complex adaptive optics imaging cameras, could only make blurry images in visible light. The new camera can work in the visible spectrum and can make high-resolution photos, because as the resolution moves towards bluer wavelengths, the image sharpness improves.
 
To correct for atmospheric turbulence, the team developed a very powerful adaptive optics system that floats a thin (1.6 mm –1/16 of inch thick) curved glass mirror (85 cm across) on a magnetic field 9.2m above the big primary mirror of the telescope. This, so-called Adaptive Secondary Mirror (ASM) can change its shape at 585 points on its surface 1000 times a second. In this manner the “blurring” effects of the atmosphere can be removed, and thanks to the high density of actuators on this mirror, astronomers can see the visible sky more clearly than ever before.