Data can be analysed to determine the composition of clouds on exoplanets

Researchers in the Department of Earth, Atmospheric, and Planetary Sciences (EAPS) at MIT describe a technique that analyzes data from NASA’s Kepler space observatory to determine the types of clouds on planets that orbit other stars, known as exoplanets.
The team, led by Kerri Cahoy, an assistant professor of aeronautics and astronautics at MIT, has already used the method to determine the properties of clouds on the exoplanet Kepler-7b. The planet is known as a “hot Jupiter,” as temperatures in its atmosphere hover at around 1,700 kelvins. 
NASA’s Kepler spacecraft was designed to search for Earth-like planets orbiting other stars. It was pointed at a fixed patch of space, constantly monitoring the brightness of 145,000 stars. An orbiting exoplanet crossing in front of one of these stars causes a temporary dimming of this brightness, allowing researchers to detect its presence.
Researchers have previously shown that by studying the variations in the amount of light coming from these star systems as a planet transits, or crosses in front or behind them, they can detect the presence of clouds in that planet’s atmosphere. That is because particles within the clouds will scatter different wavelengths of light.