Could robots become aware of their own limitations?

MIT researchers have developed software for robots that enables them to be more “aware” of their own limitations, such as knowing the whereabouts of an object, or its own location within a room.
Most successful robots today tend to be used either in fixed, carefully controlled environments, such as manufacturing plants, or for performing fairly simple tasks such as vacuuming a room,
But carrying out complicated sequences of actions in a cluttered, dynamic environment such as a home will require robots to be more aware of what they do not know, and therefore need to find out, says Leslie Pack Kaelbling, the Panasonic Professor of Computer Science and Engineering at MIT.
That’s because a robot cannot simply look around the kitchen and determine where all the containers are stored, for example, or what you would prefer to eat for dinner. To find these things out, it needs to open the cupboards and look inside, or ask a question.
The system is based on a module called the state estimation component, which calculates the probability of any given object being what or where the robot thinks it is. In this way, if the robot is not sufficiently certain that an object is the one it is looking for, because the probability of it being that object is too low, it knows it needs to gather more information before taking any action,
So, for example, if the robot were trying to pick up a box of cereal from a shelf, it might decide its uncertainty about the position of the object was too high to attempt grasping it. Instead, it would first take a closer look at the object, in order to get a better idea of its exact location, Kaelbling says. “It’s thinking always about its own belief about the world, and how to change its belief, by taking actions that will either gather more information or change the state of the world.”
The system also simplifies the process of developing a strategy for performing a given task by making up its plan in stages as it goes along, using what the team calls hierarchical planning in the now.