Aiming for a carbon-negative western United States

Generating electricity from the burning of biomass, such as urban waste and sustainably-sourced forest and crop residues, is one of the strategies for reducing greenhouse gas emissions, because it is carbon-neutral: it only produces as much carbon as the plants suck out of the atmosphere.
 
A new UC Berkeley study shows that if biomass electricity production is combined with carbon capture and sequestration in the western United States, power generators could actually store more carbon than they emit and make a critical contribution to an overall zero-carbon future by the second half of the 21st century.
 
By capturing carbon from burning biomass – termed bioenergy with carbon capture and sequestration (BECCS) – power generators could become carbon-negative even while retaining gas- or coal-burning plants. The carbon reduction might even offset the emissions from fossil fuel used in transportation, said study leader Daniel Sanchez, a graduate student in UC Berkeley’s Energy and Resources Group.
 
"There are a lot of commercial uncertainties about carbon capture and sequestration technologies," Sanchez admitted. "Nevertheless, we’re taking this technology and showing that in the Western United States 35 years from now, BECCS doesn’t merely let you reduce emissions by 80 percent – the current 2050 goal in California – but gets the power system to negative carbon emissions: you store more carbon than you create."
 
BECCS may be one of the few cost-effective carbon-negative opportunities available to mitigate the worst effects of anthropogenic climate change, said energy expert Daniel Kammen, who directed the research. This strategy will be particularly important should climate change be worse than anticipated, or emissions reductions in other portions of the economy prove particularly difficult to achieve.
 
"Biomass, if managed sustainably can provide the ‘sink’ for carbon that, if utilized in concert with low-carbon generation technologies, can enable us to reduce carbon in the atmosphere," said Kammen, a Professor of Energy in UC Berkeley’s Energy and Resources Group and director of the Renewable and Appropriate Energy Laboratory (RAEL) in which the work was conducted.