Social Media Sidebar

Announcement

Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

Just because something doesn’t do what you planned it to do doesn’t mean it’s useless.

 

Thomas Edison

Evolutionary computation will drive the future of creative AI

RATE THIS! +22
Posted in Software on 18th May, 2018 06:06 AM by Alex Muller

AI is arguably the biggest tech topic of 2018. From Google Duplex’s human imitations and Spotify’s song recommendations to Uber’s self-driving cars and the Pentagon’s use of GoogleAI, the technology seems to offer everything to everyone. You could say AI has become synonymous with progress via computing.

 

However, not all AI is created equal, and for AI to fulfill its many promises, it needs to be creative.

 

Let’s start by addressing what I mean by “creative.” My explanation involves two different types of artificial intelligence: deep learning and evolutionary computation. Deep learning is well-established in tech circles. Researchers have used its core technology in neural networks since the 1980s, and it has transformed much of what we consider to be AI today. And now, with the introduction of big data and large computing capacity, deep learning has become integral in a number of real-world applications.

 

This means we could view evolutionary computation as the next step in the progress of AI. This type of AI is based on algorithms inspired by biological evolution. Through reproduction, mutation, recombination, and selection, evolutionary computation performs a parallel, exploratory search for solutions. Because this technology is based on a population of solutions rather than a single, continuously refined solution, it can afford to try out novel ideas and discover solutions that are surprising and creative. In evolutionary computation, researchers harness these processes to reach a specific goal, such as creating a website that maximizes conversions or crafting a procedure to grow the tastiest basil plants.

 

Evolutionary computation vs. deep learning


Evolutionary computation differs from deep learning in a number of ways, but the biggest difference is that deep learning is focused on modeling what we know — supervised training on an existing data set — whereas evolutionary computation is focused on creating solutions that do not yet exist. For example, a few applications of evolutionary computation could include coming up with a trading strategy uncorrelated with others, finding optimal routes for buses to balance competing concerns, and designing a spacecraft antenna that is more complex and effective than human designs.

 

Evolutionary computation makes it possible to discover such new designs and behaviors through exuberant, but guided, exploration. It is, in a sense, the next step forward from deep learning: the form of AI that can think outside the box. And it is this kind of creativity that we need to advance AI beyond its current achievements. Deep learning has proven its value in automating behaviors and abilities that are well-known and well-described, but it has no ability to extend past them. This is why evolutionary computation will be key to the future of AI.

 

Recent work in evolutionary computation


There has been a recent surge of work in evolutionary computation that leads me to believe this is the direction AI researchers are heading in. One example is OpenAI using evolution to design neural networks for reinforcement learning, which showed that it performs as well and parallelizes better than gradient descent techniques. Such an approach takes advantage of massively parallel compute in evaluating population members.

 

The Uber.ai group also demonstrated how evolution affords broader exploration with a more explicit emphasis on novel solutions. And DeepMind outlined how such exploration of neural network architectures may lead to the successive discovery of new behaviors. Another Google breakthrough came when Google Brain researchers showed how evolutionary architecture search can improve the status quo in several image classification benchmark tasks.

 

These examples demonstrate how evolutionary computation can go above and beyond what is possible with human design. Backed by a solid foundation of research, companies have already employed evolutionary computation to build commercial applications in areas like bioinformatics, industrial optimization, and homeland security. Evolutionary architecture search may also challenge deep learning applications such as video surveillance technology and AI-interpreted videos in the future.

 

The AI of the future


Evolutionary computation provides an opportunity to expand our technological abilities beyond deep learning. Building on guided, exuberant exploration, it has the ability to create solutions that are surprising and more complex than human designs. Through this technology, AI has the potential to improve many industries, such as agriculture, health care, finance, homeland security, and online retail. While deep learning has brought us this far, evolutionary computation can bring us to the AI of the future — the creative AI.


Tags: AIsoftwaredeep learningartificial intelligence

Read original article » Back to category

Comments



 

Recent headlines

  • Posted in Hardware on 2018-10-15 14:56:49
    SpaceX rocket competitors get some US Air force help..read more
    Posted in Business on 2018-10-15 15:01:28
    China plan to win AI with lots of money, data and easy.....read more
    Posted in Science on 2018-10-13 20:59:12
    SpaceX BFR will beat SLS rocket to orbit..read more
    Posted in Medicine on 2018-10-13 20:46:16
    Anti-aging treatment against senescent cells..read more
    Posted in Science on 2018-10-08 18:36:49
    The Chernobyl area fires back up to produce power as a.....read more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in about.....read more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for commercial.....read more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 Downloads..read more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into new.....read more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs,.....read more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for commercial.....read more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short Sighted..read more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, but.....read more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in about.....read more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target mitochondria..read more

Recent Blog Posts

  • Posted by AlexMuller
    Even light drinking increases risk of death..read more
    Posted by AlexMuller
    Researchers have discovered how to slow aging..read more
    Posted by AlexMuller
    Human retinas grown in a dish explain how color vision develops..read more
    Posted by AlexMuller
    The smartphone app that can tell you’re depressed before you.....read more
    Posted by AlexMuller
    Neural networks don’t understand what optical illusions are..read more

Login to your Account

Login to your PlanetTech Account here

Username:
Password:
Remember me
or

Create a New Account

You just need username and password

The following errors occured:
Username:
Email:
Password:
Verify password:
Remember me