Social Media Sidebar

Announcement

Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

Just because something doesn’t do what you planned it to do doesn’t mean it’s useless.

 

Thomas Edison

Sound waves could provide 'liquid biopsies'

RATE THIS! +8
Posted in Science on 3rd Jul, 2018 06:25 PM by Alex Muller

Using sound waves, an international team of researchers has developed a gentle, contact-free method for separating circulating tumor cells from blood samples that is fast and efficient enough for clinical use. Circulating tumor cells (CTCs) are small pieces of a tumor that break away and flow through the bloodstream.

 

They contain a wealth of information about the tumor, such as its type, physical characteristics and genetic mutations.

 

The ability to quickly and efficiently harvest and grow these cells from a blood sample would enable "liquid biopsies" capable of providing robust diagnosis, prognosis and suggestions for treatment strategies based on individual CTC profiling.

 

CTCs are, however, extremely rare and difficult to catch. There are typically only a handful for every few billion blood cells running through a patient's veins. And while there are many technologies designed to separate tumor cells from normal blood cells, none of them are perfect. They tend to damage or kill the cells in the process, lack efficiency, only work on specific types of cancer, or take far too long to be used in many situations.

 

In a new study, researchers from Duke University, MIT and Nanyang Technological University (Singapore) demonstrate a platform based on sound waves that is capable of separating CTCs from a 7.5-mL vial of blood with at least 86 percent efficiency in less than an hour. With additional improvements, the researchers hope the technology will form the basis of a new test through an inexpensive, disposable chip.

 

Every year cancer claims the lives of millions of people around the world and researchers are still searching for better tools for cancer diagnosis, prognosis and treatment," said Tony Jun Huang, the William Bevan Professor of Mechanical Engineering and Materials Science at Duke.

 

"Biopsy is the gold standard technique for cancer diagnosis," Huang said. "But it is painful and invasive and is often not administered until late in the cancer's development. With our circulating tumor cell separation technology, we could potentially help find out, in a non-invasive manner, whether the patient has cancer, where the cancer is located, what stage it's in, and what drugs would work best. All from a small sample of blood drawn from the patient."

 

The technology works by setting up a standing sound wave at an angle to a fluid flowing through a tiny channel. Because sound is nothing more than a pressure wave, this sets up pockets of pressure that push on particles suspended in the liquid as they pass. This acoustic force acts more strongly on the larger, more rigid cancer cells than on normal blood cells, pushing the CTCs into a separate channel for collection.

 

The power intensity and frequency of the sound waves are similar to those used in ultrasonic imaging, which is used safely in numerous medical procedures. The risk of damage to the CTCs is reduced even further because each cell experiences the acoustic wave for only a fraction of a second and does not require labeling or surface modification. These features give the technique the best possible chance at maintaining the functions and native states of the CTCs.

 

The approach was first demonstrated three years ago in a proof-of-concept study and has since been improved to the point where it could be useful in a clinical setting. The result is a prototype device that processes fluid at a rate of 7.5 mL/hour, seven times faster than the original, without sacrificing any of its 86 percent efficiency or numerous advantages over other methods.

 

"The biggest asset of this acoustic method of separation is that it's very gentle on the circulating tumor cells," said Andrew Armstrong, associate professor of medicine, surgery, and pharmacology and cancer biology at the Duke University School of Medicine. "The cancer cells remain viable after passing through the chip and can be characterized, cultured or profiled, which allows us to do genotyping or phenotyping to better understand how to kill them."


Tags: bloodcancerhealthmedicineresearch

Read original article » Back to category

Comments



 

Recent headlines

  • Posted in Science on 2018-09-17 20:54:33
    Why NASA wants to build a nuclear reactor on the Moon..read more
    Posted in Medicine on 2018-09-17 16:06:39
    Anti-ageing drugs are coming, experts expain..read more
    Posted in Science on 2018-09-16 23:29:58
    NovaSAR: UK radar satellite launches to track illegal.....read more
    Posted in Science on 2018-09-14 20:59:48
    New Technique Heals Wounds With Reprogrammed Skin Cells..read more
    Posted in Business on 2018-09-14 20:56:05
    World population is now half middle class or richer..read more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in about.....read more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for commercial.....read more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 Downloads..read more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into new.....read more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs,.....read more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for commercial.....read more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short Sighted..read more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, but.....read more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in about.....read more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target mitochondria..read more

Recent Blog Posts

  • Posted by AlexMuller
    In five years quantum computing will be mainstream..read more
    Posted by AlexMuller
    Google partners with Johnson and Johnson to make lower cost.....read more
    Posted by AlexMuller
    Electron holography microscope with spatial resolution down to.....read more
    Posted by AlexMuller
    Lower cost advanced Nuclear power could dominate future US energy..read more
    Posted by AlexMuller
    Why Hasn’t AI Mastered Language Translation?..read more

Login to your Account

Login to your PlanetTech Account here

Username:
Password:
Remember me
or

Create a New Account

You just need username and password

The following errors occured:
Username:
Email:
Password:
Verify password:
Remember me