Social Media Sidebar

Announcement

Please sign up, comment on articles and bring your friends!

Current poll

PlanetTech is asking:

What do you think about our new web site?

Love it, indeed
Really good solution
Same as old one
The old one was better
This is a new option

Quote of the day

Just because something doesn’t do what you planned it to do doesn’t mean it’s useless.

 

Thomas Edison

Artificial Intelligence creating new drugs from scratch by efficiently searching huge molecular possibilities

RATE THIS! +8
Posted in Science on 9th Aug, 2018 01:57 AM by Alex Muller

Deep learning (DL) technologies are beginning to find applications in drug discovery including areas of molecular docking, transcriptomics, reaction mechanism elucidation, and molecular energy prediction.

 

A crucial step in many new drug discovery projects is the formulation of a well-motivated hypothesis for new lead compound generation (de novo design) or compound selection from available or synthetically feasible chemical libraries based on the available structure-activity relationship (SAR) data. The design hypotheses are often biased toward preferred chemistry or driven by model interpretation. Automated approaches for designing compounds with the desired properties de novo have become an active field of research in the last 15 years.

 

The diversity of synthetically feasible chemicals that can be considered as potential drug-like molecules was estimated to be between 1030 and 1060. Great advances in computational algorithms, hardware, and high-throughput screening technologies notwithstanding, the size of this virtual library prohibits its exhaustive sampling and testing by systematic construction and evaluation of each individual compound. Local optimization approaches have been proposed, but they do not ensure the optimal solution, as the design process converges on a local or “practical” optimum by stochastic sampling or restricts the search to a defined section of chemical space that can be screened exhaustively.

 

Researchers have designed and implemented a novel computational strategy for de novo design of molecules with desired properties termed ReLeaSE (Reinforcement Learning for Structural Evolution). On the basis of deep and reinforcement learning (RL) approaches, ReLeaSE integrates two deep neural networks—generative and predictive—that are trained separately but are used jointly to generate novel targeted chemical libraries. ReLeaSE uses simple representation of molecules by their simplified molecular-input line-entry system (SMILES) strings only. Generative models are trained with a stack-augmented memory network to produce chemically feasible SMILES strings, and predictive models are derived to forecast the desired properties of the de novo–generated compounds.

 

In the first phase of the method, generative and predictive models are trained separately with a supervised learning algorithm. In the second phase, both models are trained jointly with the RL approach to bias the generation of new chemical structures toward those with the desired physical and/or biological properties. In the proof-of-concept study, we have used the ReLeaSE method to design chemical libraries with a bias toward structural complexity or toward compounds with maximal, minimal, or specific range of physical properties, such as melting point or hydrophobicity, or toward compounds with inhibitory activity against Janus protein kinase 2. The approach proposed herein can find a general use for generating targeted chemical libraries of novel compounds optimized for either a single desired property or multiple properties.


Tags: healthmedicineAIresearchbiotech

Read original article » Back to category

Comments



 

Recent headlines

  • Posted in Science on 2018-08-16 18:07:15
    Radar could make for less-biased heart checks..read more
    Posted in Medicine on 2018-08-16 17:57:14
    Psychedelics Are Showing Real Promise for Treating Mental.....read more
    Posted in Hardware on 2018-08-15 14:29:50
    Airbus has solar powered stratosphere drone that has.....read more
    Posted in Science on 2018-08-15 14:22:56
    Baycrest Virtual Brain joins flagship neuroscience.....read more
    Posted in Medicine on 2018-08-14 02:56:05
    Failed antibiotics can be team up to fight against superbugs..read more
Posted in Business on 2013-10-10 01:33
China is working towards a manned lunar mission in about.....read more
Posted in Business on 2013-10-20 07:17
Spacex says China is their main competitor for commercial.....read more
Posted in Software on 2013-10-20 06:43
Pirate Bay Browser Clocks 1,000,000 Downloads..read more
Posted in Medicine on 2013-10-10 02:10
Google reportedly investing hundreds of millions into new.....read more
Posted in Medicine on 2013-10-14 03:13
Endothelial Cells Can Repair and Regenerate Organs,.....read more
Posted in Science on 01.01.2010
Spacex says China is their main competitor for commercial.....read more
Posted in Science on 01.01.2010
Staring at Your Phone Could Be Making You Short Sighted..read more
Posted in Science on 01.01.2010
Oculus Rift virtual reality headset coming to mobile, but.....read more
Posted in Science on 01.01.2010
China is working towards a manned lunar mission in about.....read more
Posted in Science on 01.01.2010
Delivering drugs via nanoparticles to target mitochondria..read more

Recent Blog Posts

  • Posted by AlexMuller
    In five years quantum computing will be mainstream..read more
    Posted by AlexMuller
    Google partners with Johnson and Johnson to make lower cost.....read more
    Posted by AlexMuller
    Electron holography microscope with spatial resolution down to.....read more
    Posted by AlexMuller
    Lower cost advanced Nuclear power could dominate future US energy..read more
    Posted by AlexMuller
    Why Hasn’t AI Mastered Language Translation?..read more

Login to your Account

Login to your PlanetTech Account here

Username:
Password:
Remember me
or

Create a New Account

You just need username and password

The following errors occured:
Username:
Email:
Password:
Verify password:
Remember me