A new convenient procedure to visualize defects on graphene layers

Graphene is anticipated to become the compound of the century. This is not surprising; graphene is extremely thin and strong and possesses outstanding electrical and thermal characteristics. Scientists expect biomedical applications, new smart materials, highly efficient light conversion and photocatalysis reinforced by graphene.
 
However, the stumbling block is that many unique properties and capabilities are related to only perfect graphene with controlled number of defects. However, in reality ideal defect-free graphene surface is difficult to prepare and defects may have various sizes and shapes.
 
In addition, dynamic behaviour and fluctuations make the defects difficult to locate. The process of scanning of large areas of graphene sheets in order to find out defect locations and to estimate the quality of the material is a time-consuming task. A simple direct method to capture and visualize defects on the carbon surface has been lacking.
 
Joint research project carried out by Ananikov and co-workers revealed specific contrast agent, soluble palladium complex (Pd), that selectively attaches to defect areas on the surface of carbon materials. Pd attachment leads to formation of nanopartilces, which can be easily detected using a routine electron microscope. The more reactive the carbon center is, the stronger is the binding of contrast agent in the imaging procedure.
 
Thus, reactivity centers and defect sites on a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a handy nanoscale imaging procedure. The developed procedure distinguished carbon defects not only due to difference in their morphology, but also due to varying chemical reactivity. Therefore, this imaging approach enables the chemical reactivity to be visualized with spatial resolution.
 
Medical application of imaging (tomography) for diagnostics, including the usage of contrast agents for more accuracy and easier observation, has proven its utility for many years. The present study highlights a new possibility in tomography applications to run diagnostics of materials at atomic scale.